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Polyubiquitin Chains

Abstract . Ubquitin is a small protein which belongs to the family of structural
conserved proteins . It governs many biological processes in eukaryotic cells through
covalent conjugation to other proteins include Poly-Ub or Ub itself . Many paper has
published to explain the function of polyubiquitin chains in nearly a decade , such as
the Lys48-linked polyubiquitin chain and the Lys63-linked polyubiquitin chain . But
other polyubiquitin chains have few research results . This review summerizes the
latest years advances about the founction of polyubiquitin chains and discusses the
potential mechanism of chain linkage, which determines the various function of
polyubiquitin chains.
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Introduction

Ubiquitin(Ub) is the consered protein consisting of 76 amino acids in eukaryotes
[1] . It can exeute different function through covalent attachment to various target
proteins in the form of a Mono-Ub or polymeric Ub chains . Ub plays an vital role as a
sign of protein degredation to up-regulate or down-regulate cell cycle progression in
celluar processes [2, 3 ] . Maybe the perfect understanding of the function of Ub is
that bonding to specific proteins for degradation by 26S proteasomes [4] . The
Ub-proteasome Systeam(UPS) (Figure.1) is the principal meachanism for the
turnover of short-lived proteins , which requires three ubiquitin enzymes, named E1,
E2 and E3 [5] . Firstly , Ub is activated by Ub-activating enzyme(E1) with the help of
ATP , forming a thiol ester with the carboxyl group of Ub ; Secondly , Ub is conveyed
to a Lys residuce of the Ub-conjugating enzyme(E2) ; At last , Ub is conveyed to a Lys
residue of target protein which depends on Ub-ligasing enzyme(E3) [6] . This
conjugation cascade is a complex but accurate precess, it usually includes a single E1,
a special E2s and several E3s, all of them are important to UPS .

Seven lysine residuces and an N-terminal methionine (M1) are in Ub , they are
Lys6, Lys1l, Lys27, Lys33, Lys48, Lys63 and G76. The polyubiquitin chain can linked
through all of them , so it can form many kinds of Poly-Ub chains , of which have
different functionam readouts [7] . Substrates attached to a single Ub are difficult to
recongnise by 26S proteam to degradate in vitro , but a chain including at least four
Ubs is more efficient [8] .
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Figure .1 The Ub-proteasome Systeam(UPS) . The substrate protein is conjugated
to the polyubiquitin chain through the catalysis of E1 , E2 and E3 ubiquitin
enzymes . The protein which is marked by polyubiquitin chain can be reconginated
by 26S proteasome and then degradation .

The K48-linked polyubiquitin chains

What is known to us is that the function of K48-linked polyubiquitin chain is to
target the substrates for degredation by 26s proteasome [9] . But it also has some
nonproteolytic functions , for expmble , it regulates the activity of the transcription
factor Met4 S.cerevisiae through conjugating with Met4 [10] . What surprised us is
that Met4 is still long-lived protein although conjugating with the K48-linked
polyubiquitin chain [11] . Later study proves that Met4 has a ubiquitin-binging
domain to conjugate with ubiquitin chains to limit the length of the chain which is
required for proteasome recognition [12] . The K48-linked polyubiquitin chain also
regulates the activity of a ubiquitin-selective , chaperone named p97 [9] . Although it
is essential to animals , it has a indispensable function in plant [13] .

53BP1 , the tumor suppressor , which is a key protein needed to regulate DNA
repair . However , it is reported that the K48-linked polyubiquitin chain palys an
crucial role in DNA repair , it controls the aggregation of the 53BP1 to the sides of
DNA damage [14] . Another report reveals that with the help of ubiquitin-selective
segregase VCP/p97 , which is aggregated to DNA breaks in an RNF8-depended




model requiring the K48-linked polyubiquitin chain , the K48-linked polyubiquitin
chain can promote the chromatin extraction of protein [15] .

The K63-linked polyubiquitin chains

K63-linked polyubiquitin chains are the other kind of ubquitin chain which has
been detected a lot by people . It is main function containing protein synthesis ,
chromosome regulation , kinase activation and DNA repair[16]. But it has different
functions with K48-linked polyubiquitin chains which can serve as degradation
purpose . Do K63-linked polyubiquitin chains work in proteolysis , some researches
have revealed a little information [17,18] , but other survery suggests that it makes
substrates degradated fate through a proteasome-independent mechanism named
autophagy .

Autophagy is a celluar process involved in the so-called autophagasome which
degrades the sequested contents [19] . Tt not only makes cells to fight with stress
conditions , but also can it delete misfolded protein aggregates and damaged
organelles which are too big to be degraded through the proteasome [9] . P63 is a
member which belongs to Ubl/UBA protein family , it can recongnized some
misfolded proteins attaching with K63-linked polyubiquitin chains [20] , but its
mechanism is still not clear . The function of K63-linked polyubiquitination is also
involved in a list of celluar events [9] .

Other types of polyubiquitin chains

K48- and K63-linked polyubiquitin chains have been detected a lot by
researchers by now , they are involved in many mechanism in both organism and
plants [21] . But other types of linked chains begain to explore in recent years .
Compared to K48- and K63-linked polyubiquitin chains , the K6- , K11- , K29- ,
K33-linked polyubiquitin chain have litter research .

Reasearches about K29-linked polyubiquitin chains involved in the degradation of
DELLA proteins , which is a important protein in the plant . It reveals that K29-linked
chains can target the DELLA protein to 26s proteasome for degradation [22] . It
means that K29-linked poly- ubiquitin chain can play a similar to the K48-linked
chains .Otherwise , the K29-linked polyubiquitin chain exists in cell in the form of
mixed or branched chains which contains other linkages [23] . K6- , K11-, K27- and
K33-linked polyubiquitin chain are tend to systhesis in eukaryotes such as S.cerevisiae
[12]. Although the function of these chains have little information , they play
non-ignorable roles in their aspects .

AlIP4 , one of the Hect domain E3 ligase , makes K29-linked polyubiquitin chains
on Notch signaling modulator DTX to induce it for lysosomal degradation [24] . BRCAI
E3 complex , can assemble K6-linked and K29-linked ubiquitin chains , it also
regulates the stability of the E3 enzyme [25] . Modification of AMPK-related kinases
are related with K29-linked ubiquitin chains in cell , which regulates the activity of
kinases [26] . Modification of AMPK-related kinses related with K29-linked and
K33-linked polyubiquitin chains in the cell , which regulates the activity of kinases
[27] . The M1-linked polyubiquitin chain is conjugating through the methionine



residue , which is located at the N-terminas [28] . It is a liner chain that plays an
significant role in mammaliam signaling pathways , including tumor necrosis factor
(TNF) [29] and NF-KB [30] .

However , the examples above all can indicted that every kinds of polyubiquitin
chain has its unique function , they are all indispensability in life cycle . A lot of
information about polyubiquitin chains wait us to be founded , these reports also
make us pay attention to the further investigation (Figure.2).
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Figure . 2 The function of different kinds of polyubiquitin chain . Different color
represents different polyubiquitin chains . M1-ubiquitin chains and K63-linked
polyubiquitin chains are main for DNA repair ; K6-linked polyubiquitin chains and
K48-linked polyubiquitin chains are for protein degradation ; K27-linked polyubiquitin
chains and K33-linked polyubiquitin chains is not clear ; K29-linked polyubiquitin
chains are for lysosomal degradation . K11-linked polyubiquitin chains is for cell
circle . They all play an important role .

Mechanism of linkage selectivity

As we know , Ub contains seven lysine residues , so they can form many kinds of
polyubiquitin chains , different chain linkages have their special functions in
biological processes . However , what’s the mechsnism of linkage selectivity ? Why it
can form the special linkage chains ?

Tow ubiquitin molecules , one called donor Ub and the other called acceptor Ub
are needed to form a polyubiquitin chain . The donor Ub is linked to ubiquitin
conjugating enzyme(E2) or the special Hect domain E3 enzyme at first and then it



ligates to a lysine residue of the acceptor Ub [31] .

Some researches have reported that the formation of a special ubiquitin linkage
are determinate by several amino acid sites near the linkage site . KIAA10 , a Hect
domain E3 enzyme , can catalyze K29- and K48-linked polyubiquitin chains [32] .
Wang and her colleagues mutanted the amino acid sites of ubiquitin one by one .
They found that E18 , E16 and D21 amino acid sites that affecting the sythnesis of
K29-linked polyubiquitin chains , if those sites mutanted , it cannot sythnesis the
K29-linked polyubiquitin chain .Tt is the same with K48-linked polyubiquitin chains,
whose linkage selectivity is determinated by F45 and Y59 amino acid sites [33] .
Ubc9-RanGAP1 interaction is also similar with them , their linkage sit is Lys526 ,which
ia related with Tyr87 , Cys93 , Asp127 amino acid sits [34] . As these related sits are
all near to the linkage sites , we call it direct mechanism . Another example is about
the K63-linked polyubiquitin chain . Previous researches have been reported that the
K63-linked polyubiquitin chain , which needs Mms2 * Ubc13 complex (UEV/E2) to
sythnesis [35] . Form its crystal structure , we can conclude that the acceptor Ub-144
and Mms2-157 are important to the orientation of acceptor Ub , so its K63 sit are
right to the G76 of dorner Ub [36, 37, 38] . In constant , those amino acid sits are
distant from the linkage site , so we call it indirect mechnasim .

At present , the mechanism of other polyubquitin chains linkage selectivity are not
clear enough, but | believe those results will arouse more people to investigating the
further secret of polyubiquitin chains .

Perspective

Recent year , many researches have been done to study the basic biology and
biochemisty of the ubiquitin protein family , which still have many new things to be
discovered . Our knowlwdge of selectivity machinery and conjugating machinery
about ubiquitin-related proteins is very scare , but one point is clear that the
srlectivity machinery of linkage is related with the other amino acide residuces and
the biochemical conjugating machinery is highly conserved .

Ubquitin is an important peptide modifier which is formed by differing the
selection of E1 , E2 and E3 enzyme , and thus lead to the polyubiquitin chains of
different linkage . Different linkages have different function . As many structure of
polyubiquitin chains and related enzymes have been showed , if we want to know
more mechanism of polyubiquitin chains , more structure work should be done in
the future . At the same time, the intensity of endeavor focused on the pathway has
also played an important role in the mechanism that we still understand . About
uniquitin and ubquitin chains , we have many work required to do , previous work
enhance our confidence to do more work and have original discover .
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Molecular mechanism of diabetic
nephropathy
Abstract

Diabetes is the major cause of chronic kidney disease which in turn
may lead to end-stage renal disease(ESRD) ending up in dialysis.
Hemodynamic and structural changes following diabetes are working
together in the process of development of diabetic nephropathy (DN).
Hyperglycemia-induced metabolic and hemodynamic pathways are
proven to be the mediators of kidney disease. Hyperglycemia causes the
formation of Amadori products, which are the altered proteins and
advanced glycation end products (AGE) are the molecular players in the
phases of DN. According to recent studies, activation of electron
transport chain induced by hyperglycemia can result in an increase in the
reactive oxygen species (ROS) formation, which is thought to be the
initiating event in the development of complications in diabetes.
Hemodynamic changes, hypertrophy, extracellular matrix accumulation,
growth factor/cytokine induction, ROS formation, podocyte damage,
proteinuria, and interstitial inflammation are the steps in the advancement
of DN. High glucose, AGEs, and ROS act in unison to induce growth
factors and cytokines through signal transduction pathways.

Key words: Diabetic nephropathy, signal pathways, ROS, AGEs



Introduction

Diabetes mellitus is now one of the leading causes of renal failure in
the world. About 40% of all type 1 diabetic patients develop diabetic
nephropathy. Since there is a considerable ethnic variability of the
incidence of diabetic nephropathy and because not all but only about one
third of type 1 diabetics develop diabetic nephropathy a genetic
contribution is very likely. Although relatively less type 2 diabetic
patients develop nephropathy promoting to end stage renal disease, this
group of patients is getting more important because of the rapidly
growing number of type 2 diabetic patients. Therefore, the knowledge of
the molecular mechanism of the pathogenesis of the diabetic nephropathy
may help to develop new therapeutic concepts and to find diagnostic
markers for early detection of diabetic nephropathy.
1. The role of signal pathway in diabetic nephropathy

Glomerular hemodynamic changes occurs very early in DN, which
include hyperfiltration and hyperperfusion injuries. There is a decrease
in both afferent and efferent arteriolar resistance which is more on the
afferent side leading to increased glomerular capillary pressure that
enhances trans-capillary hydraulic pressure gradient as well as an
increase in glomerular plasma flow. Hyperperfusion and hyperfiltration
are also said to be due to factors such as prostanoids, nitricoxide, atrial

natriuretic factor, growth hormone, glucagon, insulin and angiotensin-II



(ANG-II). The changes leading to glomerulosclerosis are elevated
intraglomerular pressure, increase in mesangial cell matrix production
and thickening of glomerular basement membrane. Hyperglycemia
stimulate the synthesis of ANG-I11, which exert hemodynamic, trophic,
inflammatory and profibrinogenic effects on renal cells. The factors that
mediate hyperfiltration injury include vascular endothelial growth factors
(VEGF) and cytokines such as transforming growth factor-beta (TGF-3 ).
The key role in diabetic vascular derangement can be attributed to TGF-
B . A basic mechanism underlying diabetic nephropathy appears to be the
high glucose(HG)-induced overexpression of transforming growth
factor-B (TGF-B ) and the accumulation of extracellular matrix(ECM)
molecules, such as collagen 1V and fibronectin. Furthermore, the other
mechanism is the increase NO production by the up-regulation of
endothelial NO synthase (eNOS) mRNA expression and by enhancing
arginine resynthesis.

Alteration of glomerular hemodynamics due to shear stress and
mechanical strain, induce the autocrine and/or paracrine release of
cytokines and growth factors. Hemodynamic stress causes structural
changes of DN by the local activation of cytokines and growth factors.
Increase in reabsorption of sodium chloride in proximal tubules or loops
of Henle leads to an increase in the glomerular filtration rate by an intact

macula-densa mechanism and hypertrophy of tubules that mediate



stimulated sodium chloride reabsorption could be pivotal in this process,
linking again structural changes with hemodynamic adaptation in DN.
a. The association of TGF-B with diabetic nephropathy
Transforming growth factor-f3 is a profibrotic growth factor causing
the expansion of mesangial matrix and renal hypertrophy in DN.
High levels of TGF-B have been measured in the glomeruli of
strptozotocin diabetic rats. It was reported that neutralizing TGF-[3
antibody prevented diabetic renal atrophy, mesangial matrix expansion,
and the development of renal failure in type 2 db/db mice. Connective
tissue growth factor and heat shock proteins, which are encoded by TGF-
B , have fibrogenic effects on the kidneys of patients with diabetes.
However, the profibrogenic actions of TGF- 1 are countered by the
decreased expression of renal bone morphogenic protein. Mechanical
stretch induces both gene and protein expression of TGF-f3 1. Stretch, via
the intra cellular signaling molecule protein kinase C, causes early
activation of p38 mitogen-activated protein kinase, which induces TGF-
B 1 and fibronectin production. The TGF-3 1 contributes to the cellular
hypertrophy and increased synthesis of collagen, which inturn leads to
DN. The platelet derived growth factor-beta(PDGF-3 ) cause histological
alterations in the glomerulus. Hyperglycemia up-regulates PDGF-[3
growth factor and its receptor in the mesangial cells leading to enhanced

TGF-B expression.



TGF-B has been acknowledged to mediate glomerulosclerosis and
interstitial fibrosis in renal diseases. The expression of TGF-8 1is
up-regulated in renal cells incubated in high glucose conditions and in the
kidney of animal models of diabetes, including the streptozotocin
(STZ)-diabetic rat or mouse and the db—/db— mouse. The TGF-f3
signaling pathway is predominantly transduced by a family of
transcription factors, the Smad proteins. After binding the TGF-$ , the
type Il receptor activates the type | receptor kinase, which next
phosphorylates Smad2 and Smad3. Then Smad2 and Smad3 combine
with Smad4 into a complex, which is translocated into the nucleus and
then up-regulates ECM genes, including FN and type | Collagen. So
Smad3 exerts powerful effects on ECM accumulation in mesangial cells
exposed to high glucose or TGF-3 1. It is reported that TGF-3 action
can be suppressed by several factors such as insulin, insulin-like growth
factor-1(1GF-1), fibroblast growth factor, interleukin-6 and interleukin-4,
and even over expression of insulin receptor substratel via activation of
PI13K/Akt pathway and TGF-3 - stimulated Smad pathway mediated
transcriptional responses is also inhibited by insulin and IGF-1. It is
therefore possible that cross-talk between Smad pathway and PI3K/Akt
pathway may affect ECM production in mesangial cells.

Just like TNFa and interleukins, the chemokine families involve in

the migration of intravascular white blood cells to inflammation regions



during an immune response. Chemokines can be divided into four types,
including CC, CXC, CX3C and C. Chemokine(C—-C motif) ligand2, also
known as MCP-1 is an extensively studied chemokine in chronic kidney
disease. Animal studies have found that MCP-1 blockade can ameliorate
chronic kidney diseases, such as lupus-like kidney disease and diabetic
nephropathy. Stromal cell-derived factor- 1 (SDF-1)is classified into two
subfamilies, including stromal cell- derivedfactorsl-a and1-@ , which are
small cytokines that belong to the inter crinefamily. SDF-1regulates
numerous homeostatic, developmental, and pathological processes
through its receptors CXCR4 by inducing several signaling transduction
pathways, including activation of PI3K/Akt pathway. SDF-1 plays an
Important role in tissue repairing by a mechanism of regulating migration
of cells. Some studies found that SDF-1a promoted the pulmonary
fibrosis. In addition, emerging evidences demonstrated that SDF-1a had
a role of cardiac protection in myocardial infarction and reduced infarct
size and fibrosis. Recently, studies found that functional blockade of
SDF-1a significantly improved diabetic nephropathy.

TGF-B -induced apoptosis is critical in development and tissue
homeostasis, and is also important for its tumor suppressor activity.
Although the mechanisms of TGF-3 -induced apoptosis vary among
different cell types, the intracellular signaling protein Smad3 functions as

a key mediator in TGF-B -induced apoptosis. For example, TGF-f3



induces apoptosis in heptocytes through Smad3-dependent cleavage of
BAD, or through Smad2, Smad3 and Smad4-mediated expression of
DAP kinase. TGF-B induces apoptosis in hepatocytes and
B-lymphocytes through Smad3-dependent transcription of the MAPK
phosphatase MKP2, which enhances the proapoptotic effect of the Bcl-2
family member Bim. Our group has previously reported that Smad3 plays
an essential role in TGF-3 -induced apoptosis in hepatocytes and lung
epithelial cells, and Akt interacts with Smad3 to inhibit Smad3-mediated
transcription and apoptosis.

Parathyroid hormone-related protein (PTHrP) is a polyhormone
secretory protein that plays a critical role in a number of biological
processes by acting via paracrine, autocrine and intracrine pathways.
PTHrP was identified as a tumor-derived humoral factor that causes
humoral hypercalcemia of malignancy. There are three isoforms of
human PTHrP peptides ranging in length from 139 to 173 residues, all of
which are subjected to extensive post-translational processing to generate
multiple secretory isoforms of mature peptides representing the
N-terminal, mid-region, and C-terminal portions of the protein. The
N-terminal 1 - 13 amino acids of PTHrP are highly homologous with
parathyroid hormone (PTH). The mid-region of PTHrP contains a
bipartite nuclear/nucleolar localization signal. PTH and PTHrP act

through a common receptor, the type | PTH receptor (PTHR1), which is a



class B G protein-coupled receptor. The N-terminal 1 - 34 amino acids of
PTH and PTHTrP are sufficient for receptor activation. However, each
region of PTHrP exhibits unique biological activities, likely acting
through its own receptors. Although PTHrP circulates in some cancer
patients and interacts with PTH/PTHTrP receptors in bones and kidneys to
cause hypercalcemia, the peptide does not normally circulate in an
appreciable amount. Therefore, PTHrP is considered a local regulatory
factor near its site of production rather than a classical circulating
hormone. The peptide and its mMRNA are ubiquitously expressed in many
mature and developing tissues. The various isoforms have been shown to
regulate many cellular functions such as myorelaxation, calcium transport,
cell growth, and differentiation, indicating that PTHrP plays fundamental
roles in the development and function of many tissues.

PTHrP gene expression is induced rapidly and can be altered by a
number of factors such as TGF- and serum. TGF-3 stimulates the
expression of PTHrP in hepatocytes and inhibits cell proliferation
through a PTHrP-dependent mechanism. Overexpression of PTHrP
enhances apoptosis in intestinal epithelial cells following serum depletion;
mutation of the nuclear localization signal abolishes its ability to promote
apoptosis by serum withdrawal. Functional linkage has been established
between TGF- and PTHrP during bone formation and bone metastasis

by certain cancers. For example, TGF- stimulates PTHrP expression in



bone culture and inhibits endochondral bone formation including
condrocyte proliferation, hypertrophic differentiation, and matrix
mineralization. The majority of breast cancers metastasizing to bone
secrete PTHrP, which induces local osteolysis that leads to activation of
bone matrix-derived TGF-B . In turn, TGF- stimulates PTHrP
expression, thereby accelerating bone destruction. These data suggest that
PTHrP mediates certain biological effects of TGF-f3 .
b. The association of NF —KB with diabetic nephropathy

Diabetic nephropathy, one of the most serious microvascular
complications of diabetes, is the leading cause of end-stage renal failure.
The pathologic changes of diabetic nephropathy are characterized by
early glomerular hypertrophy and later glomerulosclerosis and
tubulointerstitial fibrosis, which caused by the accumulation of
extracellular matrix (ECM) components in the glomerular mesangium
and tubulointerstitium. Fibronectin, one of the important ingredients of
ECM, is often used as an index to evaluate the extent of matrix
accumulation. Therefore, inhibition of fibronectin production
could be an effective strategy to delay glomerular sclerosis and prevent
the progression of diabetic nephropathy.

The pathogenesis of diabetic nephropathy has not been fully
elucidated. It is believed that diabetic nephropathy is a multifactorial

process including dysregulated lipid and glucose homeostasis,



hemodynamic abnormalities, elevated oxidative stress, and hyperactive
polyol and mitogen-activated protein kinase (MAPK) pathway
activation. Growing evidences demonstrate that activation of nuclear
factor-kappa B (NF-kB) and subsequently coordinated expression of gene
products may play an important role in the pathogenesis of diabetic
nephropathy. Nuclear factor-kB plays an important role in cell survival
and its inhibition leads to apoptosis. Increased monocyte NF-kB activity
seen in diabetics with nephropathy than diabetics without nephropathy. In
vitro studies have demonstrated that high glucose, AGEs, AGN 11, and
stretch potently induce NF-kB activation mainly via formation of ROS
and activation of PKC71 - 73 providing potential cellular mechanisms of
NF-kB activation in the diabetic kidney. Recent studies have shown that
NF-kB mediates both stretch and high glucose-induced monocyte
hemoattractant protein (MCP) production in mesangial cell playing a role
in glomerular epithelial cell apoptosis and modulates the TGF-3 1
intracellular signaling pathway. There is thus preliminary evidence for a
role of NF kB in the pathogenesis of both glomerular and tubular damage
in diabetes. Both ACE-inhibitor and statins are potent NF-kB inhibitors,
and their renoprotective action, may be, at least in part, related to the
suppression of NF-kB activity. It is also believed that diabetic
nephropathy is one kind of chronic inflammation. In diabetes, the

activated NF-kB translocates into the nucleus and triggers the expression



of its target genes including intercellular adhesion molecule-1 (ICAM-1)
and transforming growth factor-beta 1 (TGF-8 1), which in turn induce
persistent and enhanced inflammation, leading to excessive fibronectin
production and ECM accumulation.
c. The association of MAPK, PI3K/Akt with diabetic
nephropathy
Diabetic nephropathy, one of its microvascular complications, is

also increasing markedly and has become a major cause of end stage
renal disease. p38 mitogen-activated protein kinase (p38 MAPK) is a
member of the mitogen-activated protein kinase family and is know a

“stress-activated kinase” along with the c-Jun-NH2-terminal kinase.
p38 MAPK is activated by varied environmental stressors, including
osmolality changes oxidants, and proinflammatory cytokines, leading to
cellular growth, differentiation, and apoptosis. In the situation of diabetes,
nonenzymatic glycosylation of protein, polyalcohol pathway,
diacylglycerol-protein kinase C pathway, and oxidative stress could
activate p38 MAPK, resulting in the phosphorylation of transcriptional
factor and alteration of expression of genes, which participated the
development of diabetic nephropathy. The studies in vitro have shown
that high level of glucose can activate p38 MAPK signaling pathway in
renal cells and induce the phosphorylation of p38 MAPK in mesangial

cells which promotes themesangial cells producing fibronectin. Therefore,



it is believed that p38 MAPK is a signaling transductor in the diabetic
nephropathy and the agents that inhibit the activation of p38 MAPK
signal pathway should reduce the formation of extracellular matrix in
glomerular mesangium and block the thickening of glomerular basement
membrane, preventing development of diabetic nephropathy.

An increased flux of glucose through the hexosamine pathway has
also been linked to mechanisms of DN, particularly an increase in TGF-
B . Fructose-6-phosphate from glycolysis is converted to glucosamine-
6-phosphate in this pathway. Glycosylation of a transcription factor such
as Spl by N-acetylglucosamine stimulates TGF- transcription. In
addition, an increase in flux through the hexosamine pathway
up-regulates the expression of up-stream stimulatory factors(USFs) which
transactivate the TGF-B 1 promoter. Intracellular accumulation of
glucose also increases de novo formation of diacylglycerol (DAG) from
glycolytic intermediates such as dihydroxyacetone phosphate. An
increase in DAG activates several isoforms of PKC. Inhibition of PKC-[3 ,
the major isoform-induced in the kidney by hyperglycemia, ameliorates
DN. Moreover, activation of PKC could, in turn, further stimulate
MAPKSs. Erk 1, 2 as well as p38 MAPK have been implicated as
signaling intermediates in DN. MAPKSs are additionally activated by ROS
and there is likely cross-talk between the various pathways.

The serine/threonine kinase Akt regulates a number of cellular



functions, including glucose metabolism, glycogen synthesis, protein
synthesis, cell proliferation, cell hypertrophy, and cell death, which is one
of the downstream effectors of phosphoinositide 3-kinase (PI3K). It’s
demonstrated that Akt is an important mediator of mesangial cell
proliferation and ECM protein accumulation. We also reported that Akt is
activated in renal damage in streptozotocin-induced diabetic mice.

The mitogen-activated kinases (MAPKS) are also unregulated in

renal cells by hyperglycemia.

Studies have shown that the activation of p38 and extracellular
signaling kinase (Erk) 1/2 are participating in renal tubular cells and
mesangial cells proliferation in high glucoseSchizandrin (Sch), the major
lignan isolated from the Schisandra chinensis, possesses many biological
properties including hepatoprotective, anti-inflammatory, antitumor, and
anti-asthmatic activities. In the kidney, Sch have shown the protective
effect on gentamicin-induced nephrotoxicity against oxidative stress. It
seems to exist on a mutual regulation between NADPH oxidase activation
and PI3/Akt activation. Furthermore, the results indicate that NADPH
oxidase and PI3K/Akt signaling activation is required for HG-induced
Erk1/2 andP38 MAPK phosphorylation in mesangial cells. These data
were correlated with inhibition effect on HG-mediated proliferation,
protein synthesis, and ECM protein accumulation by Sch. The signaling

molecules also are involved in HG-induced ECM protein overproduction.



Sch treatment prevents proliferation and protein synthesis as well as
ECM protein accumulation by blocking NADPH oxidase activation
mechanisms, which are ROS generation, Akt, and MAPK activation,
under hyperglycemic condition. It does not exclude participation of other
signaling pathways or complementary signaling within the presented
diagram. Sch may become a valuable therapeutic drug candidate for
treatment of diabetic nephropathy, particularly for targeting NADPH
activation.

Vascular endothelial growth factor (VEGF) is one of the major
factors promoting diabetic complications . VEGF is an endothelial
mitogen and potent vasopermeability factor, the effects of which are
mediated by endothelial cell-specific receptors . A recent study indicated
that an antibody against VEGF treatment decreased hyperfiltration,
albuminuria and glomerular hypertrophy in diabetic rats. These findings
suggested that VEGF plays important roles in the pathogenesis of diabetic
nephropathy and that VEGF may be a good therapeutic target molecule
for diabetic nephropathy.

It is generally accepted that levels of VEGF and its receptor are
increased in the kidneys of diabetic rats with glomerular lesions. Since
podocytes are the major producers of VEGF within the glomeruli and
podocyte injury underlies progressive glomerulosclerosis in diabetes both

in humans and experimental models, regulation of VEGF expression in



the podocytes may provide novel insight into the pathogenesis of diabetic
nephropathy. the present study investigated the effects of high glucose on
VEGF production in podocytes. In addition, it’s reported here that high
glucose induces VEGF expression through PKC and ERK pathways in
podocytes.
d. The association of JAK/STAT with diabetic nephropathy
Recent studies suggest that Janus kinase (JAK)/signal transducers
and activators of transcription (STAT) signaling cascades may contribute
to diabetic nephropathy. This pathway is mainly related to renal cell
growth, production of the cytokine, TGF-b, as well as the ECM proteins
collagen IV and fibronectin. Wang reported that the activation of JAK2
and STAT1 proteins was a requirement for the hyperglycemia-induced
production of TGF-b and fibronectin in rat glomerular mesangial cells.
JAK/STAT pathway is an essential intracellular mechanism of cytokine
actions and constitutes a link between activation of cell surface receptors
and nuclear transcriptional event. Control of the magnitude and duration
of cytokine signaling is essential to prevent tissue damage. In this sense,
recent studies have shown that JAK/STAT signaling can be regulated
at many steps through different mechanisms. The suppressors of cytokine
signaling (SOCS) proteins have defined an important additional
mechanism for the negative regulation of the JAK/STAT pathway.

It’s demonstrated that overexpression of SOCS-1 in human



glomerular mesangial cells suppresses HG-induced JAK2/STAT
activation and overproduction of TGF-b1 and fibronectin. The
JAK/STAT pathway is an important link between cell surface receptors
and nuclear transcriptional events leading to cell growth. The JAK/STAT
pathway, especially the JAK2 - STAT1-dependent pathway, contributes
to HG stimulating TGF-b and fibronectin production in cultured rat
kidney glomerular mesangial cells. Therefore, it appears that the
activation of JAK2 and STAT proteins by hyperglycemia might play an
important role in both promoting cell proliferation and the synthesis of
ECM molecules. Thus the activation of JAK/STAT may be one of the
major mechanisms involved in high glucose-induced glomerular injury.
The blockade of JAK/STAT may be an effective method to therapy
diabetic nephropathy.
2. Oxidative stress

Increase in oxidative stress and the overproduction of reactive
oxygen species (ROS) in diabetes is occurring due to hyperglycemia.
This ROS induces peroxidation of cell membrane lipids, oxidation of
proteins, renal vasoconstriction and deoxyribonucleic acid (DNA)
damage. Various biochemical pathways are also stimulated through the
increased generation of ROS mainly PKC pathways, AGE formation,
TGF-B , and ANG-II.

Hyperglycemia results in an increase in mitochondrial ROS



formation. An increase in glucose uptake leads to overproduction of
electron donors (NADH and FADH 2) from stimulated glycolysis and
the tricarboxylic acid cycle. At the mitochondrial inner membrane, where
the electron transport chain is localized, the increase in electron donors
(NADH, FADH 2) generates a high membrane potential by pumping
protons across the inner membrane. As a consequence, electron transport
Is inhibited at complex 111 increasing the half-life of free-radical
intermediates of coenzyme Q, which finally reduces O2 to superoxide.
3. Advanced glycation end products

In longstanding hyperglycemia, the excess glucose combines with
free aminoacids or tissue proteins. This glycosylation leads to the
development of DN. This process initially forms reversible early
glycosylation products and later irreversible AGE. The matrix proteins in
the glomerular epithelial cells get accumulated along with decrease in
collagenase activity and defect in the glomerular epithelial cell tight
junction, because of the increase in AGEs.
Conclusion

Diabetic nephropathy develops due to the combined action of both
hemodynamic and signal pathways. Signal pathways are also activated
within the diabetic kidney and result in accumulation of AGEs, activation
of PKC, renal polyol formation and enhanced oxidative stress. These

derangements activate various cytokines and growth factors. To improve



the outcome of DN, more scientific knowledge is needed.
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