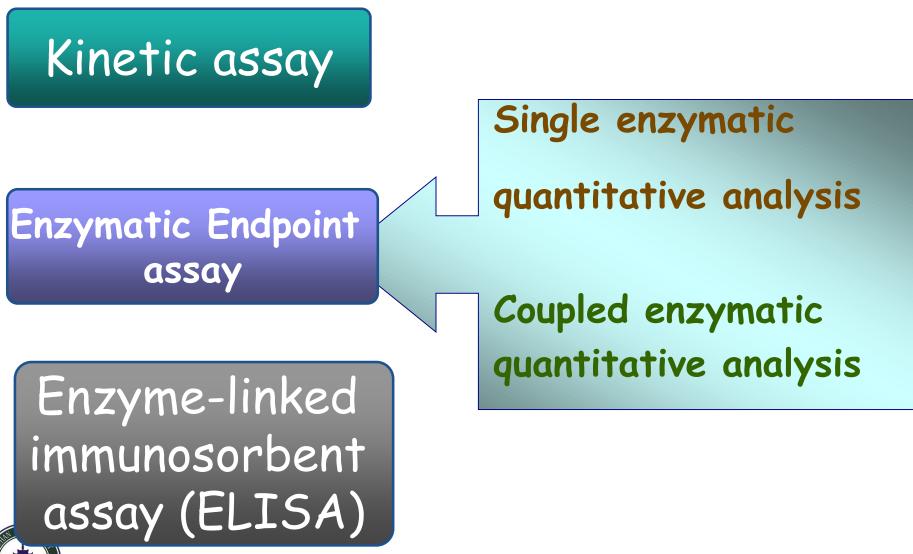


Enzyme Analysis

Contents



—— Enzymatic Endpoint Assay

Enzymatic Analysis Methods

Single enzymatic quantitative analysis To determine the substrate

LTo determine the coenzymes

Coupled enzymatic quantitative analysis Dehydrogenase as the indicator enzyme

Other enzymes as the indicator enzyme

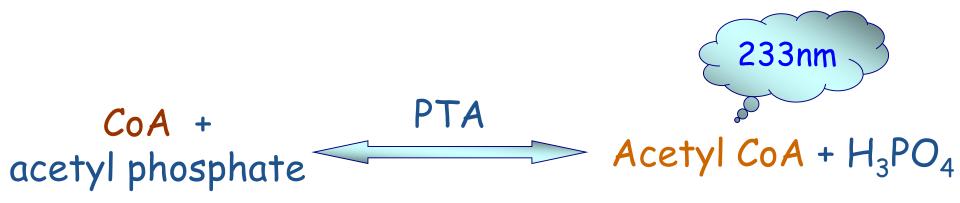
I. Single enzyme quantitative analysis

1. Determination of the substrate

The substrate can be completely convert to product, and the substrate has a special character for detection

The increment of products

Almost all substrates can be completely convert into products which can be specially measured

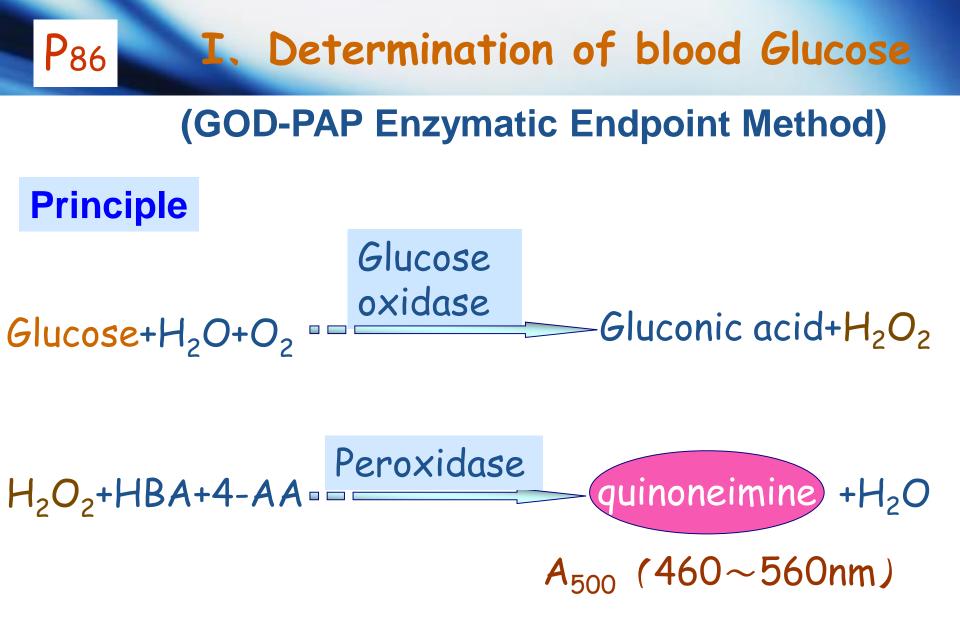

The change of coenzyme

Dehydrogenases utilizing NAD+ or NADP+ as coenzyme, The substrate can be measured by monitoring A_{340} of NADH or NADPH

I. Single enzyme quantitative analysis

2. Determination of the coenzymes

Coenzyme can be measured by single enzymatic reaction


II. Coupled enzymatic reaction assay

When the substrate or the product can't be measured directly, the quantitative assay can be carried out by coupled another enzymatic reaction.

$$A \xrightarrow{E_1} B \xrightarrow{E_2} C$$

Measuring the amount of C using E_2 as an indicator enzyme.

I. Determination of blood Glucose

Reagents:

- Reaction reagent: PBS buffer, potassium ferrocyanide, EDTA-Na₂ peroxidase (POD), Glucose oxidase (GOD), 4-AA,HBA
- Distilled water (dH₂O)
- Standard glucose solution (5.55 mmol/L or 100 mg/dL)
- Serum or plasma

Procedure

(µL)	Blank	Standard	Test
Distilled H ₂ O	5	-	-
Standard solution	-	5	-
Sample solution	-	-	5
Reaction reagent	200	200	200

Mix the solution in a 96 well microplate respectively, incubate for 10 min at 37° , the blank is adjusted to zero, A_{500} is read out using microplate reader.

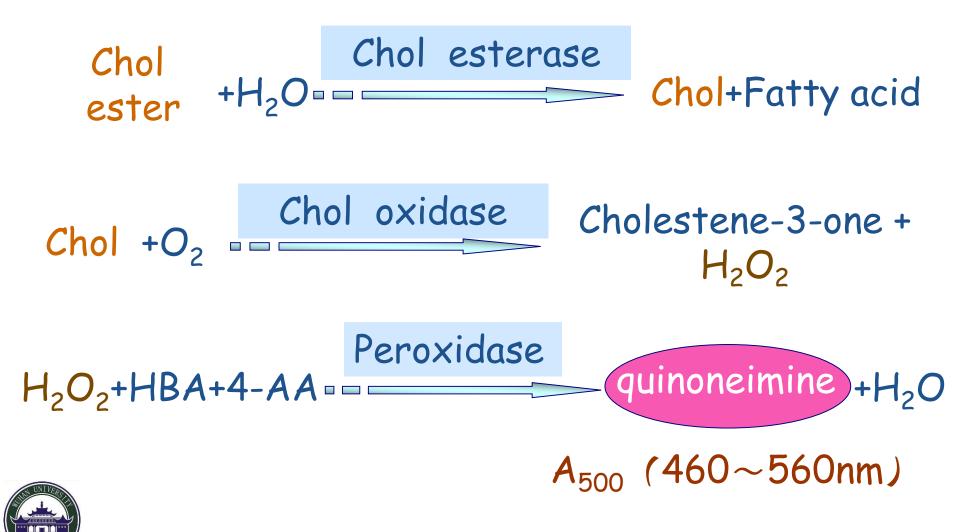
I. Determination of blood Glucose

Calculation

$$C_{Glu} (mmol/L) = \frac{A_{test}}{A_{Standard}} \times Cs$$

Glu. in serum or plasma: 3.89-5.83 mmol/L (70-105 mg/dL)

Clinical significance


Hyperglycemia

Diabetes mellitus

II. Determination of <u>Total Cholesterol (TC) in Serum</u> (CHO-PAP Enzymatic Endpoint Method)

Reagents

- Reaction Reagents:
 - PBS, peroxidase(POD), cholesteryl
 esterase(COE), Cholesterol oxidase(COD),
 4-AA, HBA
- Distilled water (diH₂O)
- Standard cholesterol solution (200 mg/dL)
- Serum or plasma (fasting overnight)

Procedure

(µL)	Blank	Standard	Test
Distilled H ₂ O	5	-	-
Standard solution	-	5	-
Sample solution	-	-	5
Reaction reagent	200	200	200

Mix the solution in a 96 well microplate respectively, incubate for 10 min at 37° , the blank is adjusted to zero, A_{500} is read out using microplate reader.

Calculation

Conc. of Chol. = $\frac{A_{\text{test}}}{A_{\text{standard}}} \times \frac{\text{Conc. of}}{\text{Standard Chol.}}$

Clinical significance

- Lipid profile is a measure of the lipid contents of the blood. It includes measurement of TG and cholesterol (TC, HDL-C, LDL-C, VLDL chol).
- Chol and TG are insoluble in water and are transported in the blood in lipoproteins, complexes of lipids with apolipoproteins.
- There are four major classes of lipoprotein: chylomicrons, VLDL, LDL and HDL. It assumes major significance in diagnosis and management of cases of dyslipoproteinemia.

Clinical significance

hypercholestrolemia

Genetic dyslipoproteinemia, Secondary dyslipoproteinemia, nephrotic syndrome, obesity, alcoholism, hypothyroidism, Diabetes mellitus and certain drugs, Premature atherosclerosis

Clinical Significance

Lipid and Atherosclerosis or CHD (Coronary Heart Disease)

Elevated cholesterol (LDL-C) levels, there is an increased incidence of atherosclerosis and its complication

HDL-C is considered as the 'good cholesterol'

Experts agree on <u>TC/ HDL-C ratio</u> as a better assessment of CHD risk.

Increased TG concentrations to be positively correlated with increased risk for CHD, however, whether TG concentration represents an independent risk factor is not clear.

Note

This experimental result is for your operation exam.

The time of final examination

June 13-16

Please submit your report (textbook) after exam.

